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The Ares Real-Time Environment for Modeling, Integration, and Simulation
(ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration
Laboratory at the Marshall Space Flight Center. The primary purpose of the Ares System
Integration Laboratory is to test the vehicle avionics hardware and software in a hardware -
in-the-loop environment to certify that the integrated system is prepared for flight.
ARTEMIS has been designed to be the real-time simulation backbone to stimulate all
required Ares components for verification testing. ARTE_VIIS provides high -fidelity
dynamics, actuator, and sensor models to simulate an accurate flight trajectory in order to
ensure realistic test conditions. ARTEMIS has been designed to take advantage of the
advances in underlying computational power now available to support hardware-in-the-loop
testing to achieve real-time simulation with unprecedented model fidelity. A modular real-
time design relying on a fully distributed computing architecture has been implemented.

I. Introduction

T
HE United States and NASA have committed to building the Ares I Crew Launch Vehicle as the man-rated
launch vehicle to support the Constellation program'. The Ares I will carry the Orion Crew Exploration Vehicle

(CEV) into orbit for visits to the International Space Station (ISS) as well as future manned missions to the lunar
surface. The Ares I vehicle is composed of multiple elements, including the First Stage Reusable Solid Rocket
Motor V (RSRMV), the Upper Stage powered by the J-2X engine, and the Interstage used to connect the two
primary stages. The Orion CEV also consists of multiple elements (the Command Module and Service Module) as
well as the Launch Abort System (LAS). At launch, the integrated vehicle stack is composed of these stages, and
throughout the mission, various elements separate from the integrated stack and return through the atmosphere
towards the Earth's surface.

The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) is software designed
to simulate the Ares I launch vehicle in order to test and verify proper operation and integration of avionics systems
across the various stages. This software is developed for use in the Ares I System Integration Lab (SIL) at Marshall
Space Flight Center (MSFC). This must be capable of running in a Hardware-in-the-Loop (HWIL) environment for
testing of actual avionics components. The software must also include all digital simulations of the avionics
components, vehicle subsystems, and flexible-body dynamics.

The Ares avionics architecture consists of components in the Upper Stage and First Stage, including a variety of
input/output (FO) comrnunication protocols, such as MIL-STD-155313, EI4/TIA-422-B, Gigabit Ethernet (GbE),
and analog signals. Within the HWIL test facility, ARTEMIS must be capable of simulating and recording data on
each of these bus types. The avionics systems must send data across stages as well as communicate with all boxes
within each stage's local avionics rin g. In order to test failure modes not easily inserted into the avionics boxes,
ARTEMIS must include all digital models of each box. This fault insertion capability requires component
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simulation nodes capable of emulating avionics box functionality as well as communicating over the flight 1/0 data
busses.

ARTEMIS must be capable of simulating the integrated stack during flight as well as propagating each
individual element after separating from the vehicle. In addition, abort sequences can lead to unique configurations
of the integrated stack as the timing and sequence of the stage separations are altered- In order to simulate nominal
and abort conditions of the vehicle, and provide realistic sensor inputs, ARTEMIS must accurately model the
dynamics and subsystems of the Ares I. The dynamics of the Ares I vehicle include significant interactions between
vehicle flexible body effects, propellant slosh, and vehicle nozzle inertia effects as well as mass and flexible body
properties that vary significantly during fli ght- Vehicle subsystems that cannot be physically tested in the laboratory
must also be modeled with high fidelity inside the HWIL simulation- Examples of subsystem models include
propellant flow through the fuel lines and engines, actuator nozzle dynamics, and engine combustion.

The following sections discuss how ARTEMIS has been designed to satisfy the unique requirements of the Ares
I SIL- Section II provides an overview of the Ares integration and test facilities that will use ARTEMIS as the
simulation backbone- Section III briefly describes the ARTEMIS software components- Section IV discusses the
modeling and simulation components in more detail, while Section V presents information on the distributed real-
time architecture. Section VI offers some conclusions and a description of the forward work leading to the first Ares
I launch-

II. Ares Integration and Test Facilities

ARTEMIS has many applications across the verification of the Ares I vehicle- ARTEMIS will be used in the
Upper Stage Software Development Facility (SDF), which supports Ares fli ght software design, development, test,
integration, and verification of the flight computer and Coinimand and Telemetry Computer (CTC)- The SDF
integrates hardware and software for the flight computer and CTC while ARTEMIS models the remainder of the
Ares I vehicle to perform all-digital processor-in-the-loop tests of the flight software and vehicle interfaces.

Three Ares element development and integration labs will then use the software developed in the SDF to perform
additional integration and testing with the respective element of the vehicle. The labs, illustrated in Figure 1, are the
Upper Stage System Integration and Test Facility (SITF), the First Stage HWIL lab (HIL), and the J-2X HWIL lab.
Each element lab is responsible for verifying the interfaces and functionality between all of its avionics components
and hardware with the flight computer and other external connections- The SITF will contain all of the Upper Stage
avionics hardware and use ARTEMIS to simulate all remaining Ares I avionics components and the vehicle flight-
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Figure 1. Ares I test facilities using ARTEMIS
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The HIL will be similar to the SITF in that it will have hardware-in-the-loop for all of the First Stage components
with ARTEMIS providing simulated components for all other stages during a test. The J-2X HWIL will use the
ARTEMIS simulation for the Ares I vehicle-, in addition, the J-2X engine hardware will interface with ARTEMIS in
this lab.

Testing will then progress to the integrated vehicle level. The Ares I Software Integration Laboratory (SIL) will
be used to verify Ares I avionics and system requirements and to validate Ares I system performance through HWIL
testing. Figure 2 shows the overall architecture of the SIL. The SIL will contain Flight Equivalent Units for both the
Upper Stage and First Stage avionics components as well as the J-2X engine controller. The laboratory will mount
avionics systems in flight-like avionics rings and will use flight-representative cables to interconnect the systems. As
shown in the green box in the center of Figure 2, ARTEMIS is the simulation backbone used to stimulate the Ares
avionics components and flight software. The Managed Automation Environment for Simulation, Test ; and Real-
time Operations (MAESTRO) software will be used by lab operators and testers to connnand the SIL, monitor data
in real-time through 2D and ;D displays, and control data recording and archiving of simulation results.
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Figure 2. Ares SIL architecture diagram

ARTEMIS will also be used to drive the Ares Emulators. The Ares Emulators are integrated hardware/software
systems that will be delivered to other Constellation test facilities. Examples of these facilities include:

• The Orion CEV Avionics Inte gration Laboratory (CAIL) at Johnson Space Center (JSC) in Houston, TX
• The Ground Operations (GroundOps) Test Facilities at Kennedy Space Center (KSC) in Cape Canaveral, FL
ARTEMIS will simulate all Ares functions and provide data to the Orion and GroundOps through the flight

interfaces as well as simulation-to-simulation interfaces as required. In a similar fashion ; Orion and GroundOps
Emulators will also be delivered to the SIL in order to simulate the functionality of those components during
integrated Ares avionics testing.

Additional applications of ARTEMIS include testing during Upper Stage and J-2X hardware integration at the
Michoud Assembly Facility (MAF) and during vehicle stacking on the mobile launcher at KSC. After each Ares
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mission has been completed, flight test data will then be used to validate all of the Ares development labs previously
discussed.

Figure 3. Visualization of ARTEMIS outputs using bdStudio

III. ARTEMIS Overview

The majority of ARTEMIS is written in C and is designed to allow distribution across multiple computing nodes.
ARTEMIS can be run in the open source Linux environment for development and non-real-time simulation
purposes, it is run under Concurrent's RedHawk Real-Time Operating System when hard real-time performance is
required. There are five primary functional software components within ARTEMIS: Models, Simulation
Infrastructure, Timing, Data Input/Output (UO), and Data Recording. ARTEMIS also contains interfaces with the
MAESTRO lab command and control software as well as bdStudio 2, the 2D and 3D visualization pro gram used to
render trajectory results during real-time tests in the SIL. Figure 3 shows a bdStudio screen shot of ARTEMIS
output from a test run.

The following section discusses each of the major software components and some of the driving requirements
and design features that differentiate ARTEMIS from other HWIL simulations developed in the past by NASA.

Models
The Models software component contains all of the code necessary to simulate the Ares vehicle and associated

avionics components and subsystems. Due to the number and complexity of vehicle system models, ARTEMIS must
take advantage of today's relatively inexpensive multi-processor computin g hardware to run an extremely high-
fidelity simulation in real-time for avionics testing.	 V

The Models are divided into three major categories: (1) Core Simulation models, (2) Subsystem Models, and (3)
Component Models. The core simulation models consist of rigid body and flexible body dynamics equations of
motion as well as the environment models, such as atmosphere, aerodynamics, and gravity, necessary to simulate the
external forces, moments, and trajectory of the vehicle. A subsystem model is a digital physics-based model
representing the vehicle's physical subsystems that are not typically tested in the laboratory. Examples of subsystem
models include the thrust produced by the firing of a reaction control system (RCS) jet, the accelerations, and
angular rates sensed by the accelerometers and gyroscopes of the Inertial Navigation System (INS), and the flow of
fluids through the Main Propulsion System (MPS) and the engines. A component model is a di gital model that
represents the functionality of an actual Ares avionics box. The component models will be used during laboratory
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build-up prior to development hardware being available, as well as for simulating select faults that cannot be easily
exercised in a real avionics box. This must also be capable of commanding  ARTEMIS to start at select pre-defined
simulation checkpoints, includin g pre-tanking, post-tanking, and inunediately before launch.

Simulation Infrastructure
This software component encompasses the overall simulation infrastructure necessary to run a hard real-time

physics-based simulation. It is responsible for commanding the simulation phase (initialization, run, and shutdown)
as well as other functions such as input data processing error handling, fault insertion, Monte Carlo dispersion
control, and interfacing with the MAESTRO test configuration and control software. This also contains the libraries
of code necessary for numerical integration and other mathematical operations needed in a physics-based simulation.

One of the key drivers is a requirement to have a single tree of source code that could be used to run in all
required ARTEMIS modes of operation. including:

• Non-real-time: All digital (desktop environment for developers)
•	 Real-time. multi-processor: All digital (no hardware boxes in the loop)
• Real-time, multi-processor: Partial HWIL, partial digital (mix of hardware boxes and component models)
•	 Real-time, multi-processor: Full H NA71L (all avionics components are in the loop)

Timing
The Timing software component is responsible for maintaining real-time operation and synchronization for the

simulation. The Timing component must be capable of calling all ARTEMIS models at the required frequency and
maintaining overall control of the simulation loop. It must be capable of running in a real-time mode or a non-real-
time mode as specified by the ARTEMIS user. The Timing module is responsible for triggering fault insertions
during simulation runs, either through overwriting data input/output variables or throu gh triggering einbedded flags
in the models.

Data Input/Output (I/0)
The Data I/O software component must be capable of simulating all data being transferred as part of the Ares I

flight architecture. The Ares I will use a wide variety of both digital and analog transmission methods across various
components and subsystems. The number of different transmission protocols being used, as well as the density of
data being used, makes the I/O requirements for ARTEMIS one of the key design drivers. Examples of digital
busses used on the vehicle include MIL-STD-155313, GbE, and various serial interfaces (e.g. EIA./TIA-422-B). In
addition, the Data I/O Component is responsible for the transfer of model-to-model simulation data: through shared
memory (single box configuration) or reflective memory (distributed configuration).

Data Recording
The Data Recording software component must be capable of recording all flight avionics bus traffic as well as all

simulation model-to-model communications. The Data Recorder must also be capable of providing local data
recording to capture internal model variables as needed for initial simulation integration and debugging.

IV. Models and Simulation

A. Core Simulation Models
The Core Simulation models include vehicle and fuel slosh dynamics, mass property calculations, atmosphere

and winds, vehicle aerodynamics, gravity, and the trajectory.

1. Vehicle Dynamics and Mass Properties
The mass properties model calculates composite vehicle Mass properties at each integration step of the

simulation. The model includes the contribution of the structural mass of each stage as well as time-varying
components based on propellant levels and mass in each tank. The mass properties model uses NASA Stress
Analysis (NASTRAN) structural output files directly as the input files for the simulation. These files include
structural properties for each component of Ares as well as flexible body properties for the integrated stack vehicle.

The flexible body dynamics uses the assumed modes method to calculate the bendin g effects of the vehicle3. A
500+ degree of freedom (DOF) model was created for ARTEMIS by reducing a 500,000 DOF model of the
integrated stack. Modal frequencies and mode shapes were compared between the two models to ensure the
reduction captured the necessary fidelity for simulation purposes.
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The vehicle flexible body characteristics are calculated using vehicle mode shapes for the integrated stack. The
time-varying nature of the mass matrix (and hence the modal mass matrix) of the system allows the modal
frequencies to change during the simulation run to match the natural frequencies of the vehicle with a particular
level of propellant loading. Figure 4 shows a screen shot from bdStudio of the vehicle flexure-, this display is
available for real-time rendering while the simulation is being nun.

j

$d

SCE	 - x ^^-	 -

Figure 4. Visualization of ARTEMIS flexible body results using bdStudio

The propellant slosh model is part of the integrated flexible dynanucs model. The mass, stiffness, and damping
elements that represent the major propellant tanks in the vehicle flexible body properties are calculated using a
special NASTRAN plug-in (HYDRO) that is designed to model hydrodynamic flow.

2. Atmosphere & Winds
Two atmosphere models are implemented in ARTEMIS. The first model is the 1976 U.S. Standard Atmosphere 

model (US76), which uses a table lookup to provide the temperature and pressure, and then calculates the density,
speed of sound, and dynamic viscosity. The second atmosphere model is the 2007 version of the Global Reference
Atmospheric Model (GRAM2007), which was developed at the Marshall Space Flight Center (MSFC). This model
is written in FORTRAN 77 and utilizes a C wrapper to interface with the simulation.

A separate winds model was added for the reference winds at the Kennedy Space Center to be used in
conjunction with the US76 model. GRAM2007 also contains a winds model that provides wind  velocity, direction
angle, and magnitude in addition to the parameters of the GRAM2007 atmosphere model. A ground winds model
has also been implemented for a more accurate representation of the wind environment while the vehicle is sitting
on the launch pad.

3. Aerodvnamics
Three aerodynamics models are currently implemented in the ARTEMIS simulation. The first model, the lumped

aerodynamics model, utilizes tables of aerodynamics coefficients indexed by various variables, such as Mach
number, altitude, angle of attack, and sideslip. The second aerodynamics model, the distributed aerodynamics
model, calculates the aerodynamic forces and moments at each specified node on the vehicle. The distributed
aerodynamics model is only used for the stack during the first stage of flight, and all other vehicles use either the
lumped aerodynamics model or no aerodynamics model at all. The third aerodynamics model calculates the
aerodynamic forces on the vehicle while it is sitting on the launch pad in a similar fashion to the distributed
aerodynamics model.
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4. Gravity
The gravity model provides the gravity force and gravity-gradient torque using the vehicle's inertial position and

mass properties. The available models are a simple, Keplerian gravity model, a fourth-order gravity model, and the
Gravity Recovery and Climate Experiment (GRACE) model s , which is valid up to degree and order 200.

5. Trajectory Calculation Utility
This code uses the vehicle state vector and the initial launch parameters to calculate various trajectory

parameters such as altitude, relative velocity, dynanuc pressure, and angle of attack. These intermediate calculations
are used as index variables for look-up tables for properties (such as aerodynamics) as well as being useful for real-
time analysis of simulation results.

B. Subsystem Models
The subsystem models represent physical subsystems such as thrusters, engines, actuators, and sensors that will

not be physically present in the SIL; these will always be simulated by ARTEMIS using physics-based models. The
following sections provide some details on the critical subsystem models that are required for closed-loop flight
control for the vehicle.

1. Redundant Inertial Navigation Unit (RINU) and Rate Gyro Assembly (RGA)
The RINU and RGA models are responsible for simulating the output of Ares I inertial flight sensors. The RINU

model is responsible for calculating the full six-degree of freedom translation and attitude solution of the Ares
vehicle for use by the Guidance, Navigation, and Control (GN&C) software algorithms. The RIND model includes
realistic error models to simulate the imperfect sensing of rotation and acceleration by the RINU's gyroscopes and
accelerometers. The RGAs are located at various points on the vehicle and are used only to measure angular
rotation. The outputs of these gyroscopes are blended together to help compensate for the effects of vehicle flexure
to provide a composite angular rate signal for use by the vehicle control system.

2. Main Propulsion System (MPS)
The MPS model simulates the

fluid flow of propellants through the
tanks, pipes, and valves used by the
Ares vehicle. The current MPS model
is an intermediate tanking model
intended for aiding in testing the pre-
launch tanking procedures within
ARTEMIS. It simulates filling the
hydrogen and oxygen tanks by

reading the liquid flow rate from the
umbilical interfaces and integrating
that flow rate as the amount of fluid
contained in the Ares second stage
tanks changes. Figure 5 shows a

bdStudio schematic of the MPS
system that can be driven in real-time
by MPS subsystem model data. The
current MPS model used in
ARTEMIS will be replaced by a
high-fidelity model provided by the
MPS design team at MSFC.
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Figure 5. Animated schematic showing MPS status in bdStudio

3. Thrust Vector Control (TVC)
The TVC subsystem model is responsible for simulating the actuators and hydraulic control system used to steer

the engine  nozzle of the vehicle in order to direct the rocket thrust along the desired vector. The TVC model
supports four levels of fidelity: an ideal model, a second-order model, a high-fidelity simplex model, and a tall-
wags-dog model. In the ideal model, the nozzle angular positions are set equal to the commanded angles. In the
second-order model, a discrete filter mathematically introduces dynamics into the nozzle's response to the
commands while limitin g rates and positions. The high-fidelity simplex model calculates an applied actuator load
force using the electrical current commands from the Booster Control and Power Distribution Unit (BCPDU). This
load is then output to a nozzle dynamics function, which uses a separate integration job to calculate the nozzle
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angular rates and position. Additionally, several outputs from the nozzle dynamics model feed back into the TVC
model. The tail-wags-dog model fully couples the dynamic motion of the nozzle and the vehicle through constraint
and TVC actuator forces. Future work for the TVC model consists of implementing the model provided by the
vendor responsible for the TVC system.

4. Engines & Booster Separation Motors (BSMs)
The engine and BSM models simulate the thrust and mass flow rate for the FS RSRMV and US J-2X engines as

well as the three types of BSMs: FS Booster Deceleration Motors (BDMs), FS forward frustum Booster Tumble
Motors (BTMs), and US Ullage Separation Motors (USMs). The engine models support both solid and liquid (mono
or bi-propellant) configurations. Each engine and BSM model takes in fire conunands, in the case of liquid engines,
cut-off commands are also received. The engine models also take in nozzle gimbal angles. These models output a
force vector at the engine or BSM node location. For certain configurations, a torque vector and propellant flow
rates are provided. Vacuum thrust is determined by a table lookup based on burn time or throttle setting: this value is
adjusted to account for atmospheric back pressure. Startup and shutdown tables can be used as well, and a maximum
of two tanks can be specified for each engine. For the RSRMV, the roll torque due to propellant swirl is calculated
using a separate lookup table. The BSM models calculate thrust in a similar fashion to the engine models. Multiple
BSM models use the same lookup table and fire conunand, and one tank may be specified per BSM. The engine and
BSM models will be replaced by high-fidelity models provided by the manufacturers.

5. Reaction Control System (RCS)
The RCS models simulate the thrust and mass flow rate for the First Stage Roll Control System (RoCS) and the

Upper Stage Reaction Control System (ReCS) to control the attitude of the vehicle. The RCS models take in the
individual thruster valve connnands and return a force vector at the various RCS node locations. The valve
dynamics are modeled to use the incoming valve command along with pre-defined timing parameters to throttle the
thruster. The timing parameters vary depending on if the thruster bed is cold, around the first 100 ms of operation, or
hot. This model also provides propellant flow rates, and the thrusters can be configured to share propellant tanks or
have individual tanks. These models will be replaced by higher fidelity subsystem models provided by the selected
RCS vendors.

C. Component Models
The component models represent the avionics boxes. These models are designed to be a digital model of flight

hardware and are interchangeable with the flight hardware for testing. There are numerous avionics components due
to the complexity of the vehicle and the manned flight redundancy requirements. The followin g sections provide
details on some of the critical avionics components that are required for closed-loop flight control of the vehicle.

L Flight Computer
The flight computer is responsible for issuing all commands to vehicle subsystems through the components

beginning with pre-launch operations. In order to simulate a sample mission, a basic model of the flight computer is
needed to allow for a controlled ascent. The ARTEMIS flight computer contains a development version of Ares
flight software algorithms that is segmented into the appropriate functional partitions. The partitions include
functions such as the mission manager, GN&C, and bus communications. The flight computer bus communications
partition contains prototype interfaces for MIL-STD-15.5 3B connnunication to the BCPDU and GUE communication
to the Orion emulator.

2. Command and Telemetry Computer (CTC)
The CTC model provides the interface between the fli ght computers and the ground; camera controllers, and data

recording systems. ARTEMIS will transform the data into the appropriate message format before passing it to the
rest of the avionics system.

3. RINUElectronics
The RINU electronics component model simulates the RINU firmware and software that is responsible for

calculating vehicle position and attitude from the gyroscope and accelerometer measurements. While the RINU
subsystem model is responsible for adding realistic errors to account for sensor imperfections, the RINU electronics
component model simulates all functions provided by the RINU hardware, software, and firmware including
communications on the fli ght avionics busses.

4. Combined Control System Electronics (CCSE)
The CCSE model is responsible for commanding the Upper Stage MPS and ReCS subsystems. The CCSE

receives commands from the flight computer and sets voltages in an output structure, simulating the output lines of
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the flight GCSE. These voltages and commands drive the solenoids and pumps of the MPS. The GCSE model also
contains the functions that provide the interface between the flight computer and the US ReCS by sending
commands to the thruster valves. The CCSE model is also responsible for relayin g sensor data from the MPS and
ReCS to the flight computer. 	 V

5. Upper Stage Engine Control Unit (USECU)
The USECU is used to control the J-2X engine to produce the desired vehicle thrust based on the commands

from the flight computer.

6. TVC Electronics (TVCE)
The TVCE component model represents the electronics used to connnand the TVC actuators. The TVCE model

reflects both hardware and software used to produce the actual TVC actuator commands based on what is
commanded by the flight computer.

7. Booster Control and Power Distribution Unit (BCPDU)
The BCPDU model perfornis both remote terminal and bus controller functions. The model receives data from

the fli ght computers and relays it to the appropriate avionics components on the First Stage. The BCPDU model
contains the prototype MIL-STD-1553B interface to the flight computer, which sends the data message containing
conunanded current for the TVC command. The message is then decoded into engineerin g units in the BCPDU for
use by the simulated TVC system. The BCPDU is also responsible for distributing the correct amount of power to
the First Stage avionics boxes.

In addition to the flight control critical models discussed above, the vehicle also contains a wide variety of other
component models located on the First Stage, Interstage, and Upper Stage. These include: Camera Controllers
(CCs), Ares GPS Tracking Unit (AGTU), Altitude Sensor Assembly (ASA), Cryogenic Level Sensor System
(CLSS), Flight Safety System (FSS), Ignition & Staging Controller (ISC), Power Distribution & Control Unit
(PDCU), Recovery Control Unit (RCU), Radio Frequency (RF) System, and various Data Acquisition Units.

D. Emulator Models
ARTEMIS contains low-fidelity emulators of both the Launch Control Center (LCC) GroundOps and Orion

CEV systems that will both be replaced by emulators from KSC and JSC, respectively. The GroundOps emulator
contains an initial tankin g model for the LH, and O, tanks. It also has built-in checkpoint start capability that allows
the user to start the simulation from four different starting times: Tanks Empty, Tanks Full, Terminal Count, and
Launch. An initial model of all of the umbilical interfaces has also been created and tested.

The current Orion emulator contains a model of the Orion flight software, which allows the Ares simulation to
respond to abort connnands and nominal flight staging events. A prototype GbE interface has been developed in the
Orion emulator to coimnunicate with the Ares flight computer over a flight-like bus.

V. Distributed Real-Time Simulation

A. Timing
The core element for the timing of ARTEMIS is the synchronization (Sync) functionality. The Sync program

synchronizes the execution of the simulation executables based on the user input frame time to an external clock
source -- such as Inter Range Instrumentation Group designation B' (IRIG-B) or Concurrent's Real-Time Clock &
Interrupt Module (RCIM). It also coordinates the data transfer to and from the shared memory region (or reflective
memory when run as a distributed system) to ensure data coherency and interfaces with the MAESTRO software
during a SIL test to pass connnands from the test engineer to ARTEMIS. In addition, Sync is responsible for
inserting faults by writing over data in the shared/reflective memory region when prompted by either a user
command or a pre-defined condition. Lastly, Sync sets all of the real-time parameters including locking memory,
real-time priority, and running  specific processes on different processors and different computers.

Fault insertion is triggered by a user or pre-defined condition and carried out by Sync in one of two ways. The
first way is to write over a specific variable in the shared/reflective memory region, which limits the variables that
can be faulted. A wider range of faults can be injected using the second method, which requires additional
functionality so that a flag specifies a fault or set of faults embedded in the model.

All of the simulation data that is needed for simulation-to-simulation corninunication is transferred through
shared or reflective memory. Reflective memory is used in a distributed simulation: however, development tests can
run on a single machine using local shared memory. At the beginning of each software frame. the Sync process
copies in all of the data from the shared/reflective memory region to each executable's local memory. Once all
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processes have completed the computational cycle, Sync allows each process to copy output data back to a specific
region of shared or reflective memory that is reserved specifically for that model. The simulation data needed to
communicate between the various emulators in the SIL will also use reflective memory to transfer data that is not on
one of the flight busses.

To achieve real-time performance, the ARTEMIS executables must be distributed across many processors within
multiple computers (Simnodes), which allows for higher-fidelity, computationally intensive models to be used. The
models communicate via hardware and software interfaces as described above. This allows each model to have a
separate executable, which is valuable for HWIL scenarios. Each model starts independently; however, ARTEMIS
utilizes a multi-phased initialization because some models depend on information from others. After each phase of
the initialization, all of the interface data is copied to shared memory.

In addition to moving executables from one node to another, a single executable may be threaded across multiple
processors on a single Sinmode to reduce the impact of computationally robust models. For a robust model,
threading one executable may be better than separating the computation into multiple executables. Threading allows
all independent sections of a model to be completed in parallel using data from a single frame, while splitting the
model into multiple executables would create frame lags. Additionally ; more data would likely need to be passed
through the shared , reflective memory region in the multiple executable cases because threads share local memory.
Currently, the flexible body dynamics model is the most computationally intensive model and requires the highest
level of threading. Real-time performance cannot be achieved without threading the individual jobs of the flexible
body calculations. Although the threaded jobs must be independent from one another, it is very important to
understand the dependencies on the previous and following jobs. Understanding these dependencies is the key to
correctly threading jobs in a model.

The grouping of executables on the Simnodes allows the Simnodes to be included or excluded for various HWIL
test configurations. The model executables are physically distributed in close proximity to the flight hardware units
in the SIL so that a model may be substituted for the avionics hardware during any test. For example, Sinmode 1
could contain the simulated flight software, but when actual flight computers are being tested, Simnode 1 would not
be used in the test to simulate flight software. In addition ; ARTEMIS contains a data recording executable that is
required to record all avionics bus traffic, simulation-to-simulation data, and local model data. Local model data
recording can also be turned off during a run if necessary.

The test confi guration, provided by the MAESTRO user ; dictates the Simnodes that are used and the hardware or
software being tested. Currently ; five Simnodes are necessary to achieve real-time performance. One Sin-mode is
designated as the master node and the other four are the slave nodes. The relationship between the nodes is shown in
Figure 6. The current hardware architecture for ARTEMIS includes 64-bit multi-core computing nodes, with the
number of cores ranging from 8-16 depending on the required functionality of the box. As discussed previously, the
real-time configuration uses Concurrent's RedHawk operating system on all computing nodes.

Master	 I	 Slave

IRIG	 I I RefMem I	 I	 I RefMem

Core 0	 Core 0
Linux	 Linux

Core 1	 Core 1
Sync	 Sync

	

[SimThread]	 [SimThread]

	

[SimThread]	 [SimThread]	 "'

Core n	 Core n

	

[SimThread]	 [SimThread]

	

[SimThread]	 [SimThread]

Figure 6. Multiple node distributed configuration



B. Data Recording
Since ARTEMIS will be used for hardware-in-the-loop testing, it must support all of the Ares hardware

interfaces for communications (MIL-STD-1553B, GbE, and EIA/TIA-422-B), power, analogs, and discretes, as well
as simulation data interfaces between ARTEMIS and the emulators from other NASA centers. ARTEMIS must also
simulate any of the hardware interfaces when digital models are used in place of fli ght hardware for a test.

The majority of the interfaces that are needed in ARTEMIS are for Ares I communications. A custom piece of
software has been developed in conjunction with ARTEMIS to handle all of the I/O for these interfaces. This
software, the I/O Layer, provides a common set of functions to call from within a component or subsystem model
that will initialize the communication device, read or write data in the appropriate format, and close the device.
Based on an XML input file, the VO Layer configures each device and the node where it is installed. The I/O Layer
input file also contains a field that tells the simulation if it is running with a simulated device (e.g. no flight-like
hardware for that particular interface) so the I/O Layer will then write the data to either shared or reflective memory
depending on the test config^uation. ARTEMIS is not currently set up to handle the power, analog, or discrete
interfaces, but those will become a major focus in the future as each interface is further defined.

C. Data I/O
As previously discussed, the data recorder must be capable of capturing all fli ght avionics I,/O communications

as well as simulation model-to-model data transfer. The data recorder must also be capable of capturing local model
internal variables. Since complete tests of the Ares avionics system can run from pre-tanking through post Orion
separation, the simulation must be capable of capturing hi gh-rate data for over 80 hours of testing. A variety of
potential hardware options (including solid state drives) are being evaluated than can hold the required amounts of
data and transfer it in real-time to support these long duration tests.

VI. Conclusion

ARTEMIS has been developed to support Ares I HWIL test requirements and has been designed to be as
modular as possible to support all required test configurations including the SIL, SITE SDF, and Ares Emulators.
ARTEMIS takes advantage of modern computing power to provide an extremely realistic dynamics and subsystem
simulation capability that is a significant improvement in fidelity compared to previous launch vehicle test facilities.
ARTEMIS also provides hard real-time determinism and supports the high-density 1/0 operations required to
support Ares I avionics test.

ARTEMIS will be used in the coming years to integrate and test the Ares avionics systems. High-fidelity
component models will be provided by the avionics box vendors and will be integrated into ARTEMIS over the next
6 months. Engineering Development Units for the avionics hardware will arrive in 2010 and will be integrated into
the laboratories to provide initial test and check-out capabilities. As part of the overall SIL certification effort prior
to the commencement of formal testing, ARTEMIS must undergo a significant verification and validation effort.
ARTEMIS subsystem and component models will be compared against test results from the actual systems as well
as the subject matter expert's critical math model representations for those systems. The flight dynamics and
environment models will be compared against independent dynamics simulations used on other parts of the Ares
project. The integrated simulation will be validated throu gh comparisons against fli ght test data for unmanned flight
tests. Until flight test data is available, ARTEMIS will compare results against other integrated simulations used on
the Ares program as well as test data from other major ground-based test activities such as the Inte grated System
Test Assembly ground testing and Ares Ground Vibration Testing. ARTEMIS has been designed to be modular and
easily upgraded as the computational power of simulation nodes continues to increase. ARTEMIS can be easily
adapted to simulate other launch vehicles and extended to support future missions such as Ares V integration and
test to support lunar mission development.
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